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a b s t r a c t

Multilevel fast multipole algorithm (MLFMA) is developed for solving elastic wave scatter-
ing by large three-dimensional (3D) objects. Since the governing set of boundary integral
equations (BIE) for the problem includes both compressional and shear waves with differ-
ent wave numbers in one medium, the double-tree structure for each medium is used in
the MLFMA implementation. When both the object and surrounding media are elastic, four
wave numbers in total and thus four FMA trees are involved. We employ Nyström method
to discretize the BIE and generate the corresponding matrix equation. The MLFMA is used
to accelerate the solution process by reducing the complexity of matrix–vector product
from OðN2Þ to OðN log NÞ in iterative solvers. The multiple-tree structure differs from the
single-tree frame in electromagnetics (EM) and acoustics, and greatly complicates the
MLFMA implementation due to the different definitions for well-separated groups in differ-
ent FMA trees. Our Nyström method has made use of the cancellation of leading terms in
the series expansion of integral kernels to handle hyper singularities in near terms. This
feature is kept in the MLFMA by seeking the common near patches in different FMA trees
and treating the involved near terms synergistically. Due to the high cost of the multiple-
tree structure, our numerical examples show that we can only solve the elastic wave scat-
tering problems with 0.3–0.4 millions of unknowns on our Dell Precision 690 workstation
using one core.

� 2008 Published by Elsevier Inc.
1. Introduction

The fast multipole method (FMM), also known as fast multipole algorithm (FMA) in electromagnetics (EM), was first pro-
posed by Rokhlin [1] as an accelerator for integral equation solvers. This method has been greatly developed and widely used
in various areas of science and engineering, such as astrophysics, molecular dynamics and electrical engineering [2–7,11].
The distinct characteristic of the method is the rapid evaluation of matrix–vector multiply in an iterative solver of matrix
equation by decomposing the integral kernels into radiation patterns, translators and receiving patterns. This decomposition
removes the necessity of explicit storage of matrix elements except for those related to near interaction, leading to a matrix-
free scheme. Also, for dynamic problems, the development of multilevel scheme for FMA (resulting in multilevel FMA or
MLFMA), with the use of the diagonalization in the translator and the interpolation or anterpolation in radiation and receiv-
ing patterns, reduces the complexity of solution process from OðN2Þ to OðN log NÞ in iterative solvers, where N is the number
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of unknowns in the matrix equation. When N is very large, there exists a big difference between these two cost scales and the
latter makes possible the solutions of very large problems with millions of unknowns on ordinary workstations. The influ-
ence of the method is so profound in science and engineering that it has been recognized as one of top 10 algorithms along
with Dantzig’s simplex method, Krylov subspace iteration, fast Fourier transform, etc., in 20th century [12].

As pointed out in a review article for FMM [13], the most impressive development for the method is in electrical engi-
neering where workers use the method to solve very large problems by extending the method to MLFMA [5–7]. A typical
application for this method is to calculate electromagnetic scattering by aircrafts in which millions of unknowns are involved
in the discretization of integral equations [14]. The solutions for the problems with 10–20 million unknowns have been re-
ported several years ago [15–17], and most recently, the problem with more than 85 millions of unknowns has also been
solved in a parallel scheme [18,19].

Compared to the rapid development of FMA in electrical engineering, the BIE community in applied mechanics seems to
remain less active with respect to FMM [13], even in recent years. Particularly, very few publications can be found for elas-
todynamic applications of the method. In those papers [20–25] mentioned by the review article [13], the first three only ap-
plied FMA to solve 2D problems for elastic wave scattering by rough interface or by many cavities and cracks or in the time
domain. The other publications dealt with 3D problems but the maximum number of unknowns was N ¼ 24;576 [25]. There
is no significant advance in recent years, i.e. after the review paper in terms of our literature search. Some recent works also
mainly focused on 2D case, elastostatic case or the time-domain approach for 3D problems [26–29]. We intend to enhance
the application of FMA in elastodynamics by presenting this work in which the MLFMA is developed for solving elastic wave
scattering by large 3D objects in the frequency domain.

Unlike the acoustic wave and electromagnetic (EM) wave BIE’s in which only one wave exists, the elastic wave BIE in-
cludes multiple waves and more complicated kernels. Hence the implementation of the FMA is quite different. Since FMA
is based on the addition theorem for the Green’s function and the kernel for one medium involves two different scalar
Green’s functions: one for the compressional wave and the other for the shear wave, we need to create two different
FMA trees for one medium. If Nyström method is used as a matrix equation generator underlying the FMA and we wisely
formulate the radiation and receiving patterns, there will be nine radiation and receiving patterns and nine matrix–vector
multiplications are needed in each iteration.

Since multiple trees are used, the difference of wave numbers in different trees leads to the different definitions for well-
separated groups by which the near terms and far terms are defined. The far terms are handled with the MLFMA but the near
terms are still generated with the based Nyström method. In our original Nyström method implementation without MLFMA
acceleration [30], we evaluate the near terms by combining the two scalar Green’s functions in the kernels, viz. the compres-
sional wave Green’s function and shear wave Green’s function. This combination will cancel the hyper singularity in the lead-
ing terms of the series expansion of the scalar Green’s functions, resulting in weakly singular 1=R and 1=R2 kernels, where R is
the distance between a field point and a source. However, the multiple-tree structure in MLFMA will destroy the combina-
tion and require the evaluation of both near terms and far terms tree by tree. Fortunately, we can re-combine those near
terms from different trees by searching the common near patches and evaluate them using the scheme in the original
Nyström method with appropriate reformulation.

We have implemented the proposed MLFMA as demonstrated in numerical examples. Due to the high cost of the multi-
ple-tree structure and the complexity of integral kernels, we can only solve the elastic wave scattering problems with 0.3–0.4
millions of unknowns currently on our Dell Precision 690 workstation. This machine has two dual-core 3.0 GHz processors
and 16 GB RAM, but we only use one core in the series implementation. Hence, the memory usage is intentionally limited to
within 12 GB.

2. MLFMA

MLFMA has been introduced in details by many publications, such as [8–11], and is not repeated here. We only present
several key formulas to facilitate the description of implementing this algorithm for solving elastic wave scattering prob-
lems. In the iterative solution of matrix equation, the bottleneck is the matrix–vector multiply which requires OðN2Þ oper-
ations in each iteration. MLFMA changes the computing strategy of the matrix–vector product for far-interaction terms by
factorizing the Green’s function with diagonal factors, applying interpolation and anterpolation between levels, using an in-
verted tree structure in the calculation. It includes three stages, i.e. aggregation, translation and disaggregation for calculat-
ing the far interaction between the grouped source points and field points. Consider a typical matrix equation
XN

i¼1

Ajiai ¼ bj; j ¼ 1; . . . ;N ð1Þ
where N is the total number of unknowns after discretizing an integral equation, bj is the known excitation in a wave equa-
tion, ai is the unknown coefficient to be solved, and Aji is the element of the matrix. In wave physics, the matrix element Aji is
related to the scalar Green’s function which can be expanded as [8]
eikrji

rji
¼
Z

d2k̂eik�ðrjm�rim0 Þamm0 ðk; rmm0 Þ ð2Þ
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where
amm0 ðk; rmm0 Þ ¼
ik
4p

XL

l¼0

ilð2lþ 1Þhð1Þl ðkrmm0 ÞPlðr̂mm0 � k̂Þ ð3Þ
is the translator. Here, we have chosen rm and rm0 as the centers of the mth and m0th groups in which the field point rj and
source point ri reside, respectively. Usually the integral kernels in wave integral equations will include the gradient opera-
tion on the scalar Green’s function. The expansion for integral kernels can be obtained by simply replacing the gradientr in
space domain with multiplication of ik in the k̂-domain in Eq. (2). Thus the matrix element in (1) can be written as
Aji ¼
Z

d2k̂Vfmjðk̂Þ � amm0 ðk; rmm0 ÞVsm0 iðk̂Þ ð4Þ
where
Vfmjðk̂Þ ¼
Z

DSj

dSeik�rjm

Vsm0 iðk̂Þ ¼
Z

DSi

dSe�ik�rim0 f ðk̂Þ ð5Þ
are the receiving pattern (aggregation stage) and radiation pattern (disaggregation stage), respectively. In the above, f ðk̂Þ de-
notes the k̂-domain representation for the operation acting on the scalar Green’s function in the integral kernels.

In the multilevel implementation, the outgoing wave expansions in the radiation pattern are calculated at the finest level
and then the expansions for higher levels are obtained by interpolation. Similarly, the anterpolation or transpose interpola-
tion is used to get the incoming wave expansion at a lower level from that at its parent level in the receiving pattern. The
interpolation or anterpolation is the key technique for reducing cost and computational complexity in MLFMA.

3. MLFMA formulas for elastic wave scattering

Consider the typical elastic wave scattering by a 3D elastic object embedded in a homogeneous elastic medium, as shown
in Fig. 1. The elasticity of a medium is characterized by ðq; k;lÞ, where q is the mass density, k is the bulk modulus, and l is
the shear modulus. The subscript 1 denotes the surrounding medium and 2 denotes the object. The governing BIE for the
problem can be found that [31,32]
1
2

uðxÞ þ
Z

S
TT

1ðx;x0Þ � uðx0Þ � GT
1ðx; x0Þ � tðx0Þ

h i
dS0 ¼ uIðxÞ; x 2 S

1
2

uðxÞ þ
Z

S
GT

2ðx;x0Þ � tðx0Þ � TT
2ðx;x0Þ � uðx0Þ

h i
dS0 ¼ 0; x 2 S ð6Þ
where u and t, the unknowns to be solved, are the total displacement and traction vectors at the surface S of the object, G is
the tensor Green’s function given by
G ¼ 1
l

Iþrr
k2

s

 !
gsðx; x0Þ �

1
c
rr
k2

c

gcðx;x0Þ ð7Þ
and T ¼ n̂0 � Rðx;x0Þ where Rðx;x0Þ ¼ kIr � Gþ lðrGþ GrÞ is a third-rank Green’s tensor. G and T are also known as the
Stokes’ displacement and traction tensors, respectively, and the superscript T on them denotes the transpose. In (7),
gs ¼ eiksr=ð4prÞ and gc ¼ eikcr=ð4prÞ are the scalar Green’s functions in free space, and r ¼ jx� x0j is the distance between a
field point x (without a prime) and a source point x0 (with a prime). The subscript s denotes the shear wave and c denotes
Iu
O

1x

3x
2x

S
222 ,, μλρ

2V

111 ,, μλρ
1V n′ˆ

Fig. 1. Elastic wave scattering by a 3D elastic object embedded in an elastic medium.
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the compressional wave. The corresponding wave numbers are given by k2
s ¼ x2q=l and k2

c ¼ x2q=c with c ¼ kþ 2l, and x
is the angular frequency here. Also, the superscript I in (6) denotes an incident wave, the hat on a variable indicates a unit
vector, the boldface of a variable implies a vector, single bar over a vector denotes a dyad, double bars over a vector denote a
third-rank tensor, and I stands for the identity dyad in (7). If the object is a rigid inclusion or traction-free cavity, the above
equations can be simplified and the individual MLFMA formula can be developed for each case.

Note that the multiple trees are needed in the implementation because two waves with different wave numbers exist in
each medium. The shear wave has a wave number ks and the compressional wave has a wave number kc. The ratio of these
two wave numbers will be
ks

kc
¼

ffiffiffiffi
c
l

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k
l
þ 2

s
ð8Þ
Since both k and l are positive, the above ratio will be greater than
ffiffiffi
2
p

. If the object is elastic, then there are also two wave
numbers inside the object which are different from the two wave numbers in the surrounding medium.

Due to the use of multi-tree structure, the computational costs are quite different from those in EM problems. For elastic
objects, we have four FMA trees and each tree has an independent aggregation–translation–disaggregation process. There-
fore, compared with the single-tree EM problems, the costs will be at least four times. Also, there are nine radiation and
receiving patterns in total for each medium (two trees). This is because the unknown vectors in the elastic BIE are three-
dimensional (three components) over the boundary (surface) and we use Nyström method to solve it. The unknown vectors
(electric and magnetic currents) in EM surface integral equation (SIE) are two-dimensional, namely, they are surface vectors.
If we use the solving process for EM SIE to solve the elastic BIE, namely, use the method of moments (MoM) with
Rao-Wilton-Glisson (RWG) basis for expanding the surface component and pulse basis for expanding the normal component
of unknown vectors in the elastic BIE, the number of patterns will be four. The other contribution to the difference of the
‘‘CONSTANT” in the computational complexity expression comes from the big difference in formulations between these
two types of problems. From Eqs. (26) and (27) in Section 4, we can see that the kernels in elastic BIE are much complex
than those in EM SIE, so the implementation costs are also much higher.

3.1. Scattering by a rigid object

If the object is rigid, the unknown displacement vector on the surface vanishes and the above BIE becomes
Z
S

GT
1ðx;x0Þ � tðx0ÞdS0 ¼ �uIðxÞ; x 2 S: ð9Þ
From (7), we can see that the above kernel G includes two parts. One is related to the shear wave Green’s function gs and the
other, to the compressional wave Green’s function gc . We have to create an individual FMA tree for each of the two Green’s
functions so that the far-interaction terms between the ith source point and jth field point can be calculated by
Aw
ji ¼

Z
d2k̂wVw

fmjðk̂wÞ � aw
mm0 ðkw; rmm0 ÞVw

sm0 iðk̂wÞ; w ¼ s or c ð10Þ
where Vw
sm0 i and Vw

fmj are radiation pattern and receiving pattern, respectively, and aw
mm0 is the translator. They are defined for

the shear wave when w ¼ s and the compressional wave when w ¼ c, respectively. From the above kernel and the identity
for the scalar Green’s function (2), we can find the corresponding receiving pattern and radiation pattern as follows:
Vs
fmjðk̂sÞ ¼

eiks �rjm

4pl

Vc
fmjðk̂cÞ ¼

eikc �rjm

4pc

Vs
sm0 iðk̂sÞ ¼

Z
DSi

dS0Ese�iks �rim0

Vc
sm0 iðk̂cÞ ¼

Z
DSi

dS0Ece�ikc �rim0 ð11Þ
where
Es ¼
X3

i¼1

X3

j¼1

Es
ijx̂ix̂j

Ec ¼
X3

i¼1

X3

j¼1

Ec
ijx̂ix̂j

ð12Þ
and
Es
ij ¼ dij � ks

i k
s
j

Ec
ij ¼ kc

i kc
j ð13Þ
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In the above, we have used the indicial notation in the Cartesian coordinate system and defined kw ¼ kwk̂w with
k̂w ¼ kw

1 x̂1 þ kw
2 x̂2 þ kw

3 x̂3 (w ¼ s or c). Also, DSi represents a small triangle patch in the discretization of the object surface
S and dij is the Kronecker delta.

3.2. Scattering by a traction-free cavity

If the object is a traction-free cavity such as a bubble in elastic material, the unknown traction vector at the surface van-
ishes and the BIE is reduced to
1
2

uðxÞ þ
Z

S
TT

1ðx; x0Þ � uðx0ÞdS0 ¼ uIðxÞ; x 2 S ð14Þ
The integral kernel can be written into two parts, i.e.
T ¼ n̂0 � Rðx; x0Þ ¼ kn̂0r � Gþ ln̂0 � ðrGþ GrÞ ¼ Aþ B ð15Þ

where
A ¼ kn̂0r � G ¼ k
c

n̂0rgc

B ¼ ln̂0 � ðrGþ GrÞ ð16Þ
The first part is only related to the compressional wave and its expansion in k̂ domain can be found as
A ¼
Z

d2k̂ceikc �rjm � amm0 ðkc; rmm0 ÞQ ce�ikc �rim0 ð17Þ
where
Q c ¼ c3

X3

i¼1

X3

j¼1

qc
ijx̂ix̂j ð18Þ
with c3 ¼ ikkc=c and qc
ij ¼ n0ik

c
j . Here n0i is a component of the unit normal vector on the object surface n̂0, i.e.,

n̂0 ¼ n01x̂1 þ n02x̂2 þ n03x̂3.
The second part includes both shear wave and compressional wave and we can separate these two waves in k̂ domain, i.e.
B ¼
Z

d2k̂seiks �rjm � amm0 ðks; rmm0 ÞPse�iks �rim0 �
Z

d2k̂ceikc �rjm � amm0 ðkc; rmm0 ÞPce�ikc �rim0 ð19Þ
where
Ps ¼ c1

X3

i¼1

X3

j¼1

ps
ijx̂ix̂j

Pc ¼ c2

X3

i¼1

X3

j¼1

pc
ijx̂ix̂j ð20Þ
and
c1 ¼ �
2ilk3

s

4px2q

c2 ¼ �
2ilk3

c

4px2q
ps

ij ¼ ks
i k

s
j ðn01ks

1 þ n02ks
2 þ n03ks

3Þ
pc

ij ¼ kc
i kc

j ðn01kc
1 þ n02kc

2 þ n03kc
3Þ ð21Þ
After combining these two parts together, the corresponding receiving pattern and radiation pattern for the kernel can be
written as
Vs
fmjðk̂sÞ ¼ eiks �rjm

Vs
sm0 iðk̂sÞ ¼

X3

i¼1

X3

j¼1

ðc1ps
ij þ c4qs

ijÞ
Z

DSi

dS0e�iks �rim0

Vc
fmjðk̂cÞ ¼ eikc �rjm

Vc
sm0 iðk̂cÞ ¼

X3

i¼1

X3

j¼1

ðc3qc
ij � c2pc

ijÞ
Z

DSi

dS0e�ikc �rim0 ð22Þ
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where
qs
ij ¼ n0ik

s
j þ dijðn01ks

1 þ n02ks
2 þ n03ks

3Þ ð23Þ
and c4 ¼ c1=2. Note that we do not include the identity or constant term ð1=2Þ of the BIE in the receiving pattern or radiation
pattern because it belongs to near terms (diagonal terms) which MLFMA will not work on.

3.3. Scattering by an elastic object

If both the object and the surrounding medium are elastic, we have two BIE’s corresponding to the waves in the exterior
medium and interior medium of the object. In each medium, there are two types of waves, i.e. shear wave and compressional
wave, so we have four wave numbers in total and need four FMA trees. In an indicial notation, the BIE’s in (6) can be written as
1
2

ui þ
Z

S

X3

j¼1

�Gð1Þij t0j þ Tð1Þij u0j
h i

dS0 ¼ uI
i

1
2

ui þ
Z

S

X3

j¼1

Gð2Þij t0j � T ð2Þij u0j
h i

dS0 ¼ 0

i ¼ 1;2;3 ð24Þ
or in a matrix form
�Gð1Þ11 �Gð1Þ21 �Gð1Þ31 Tð1Þ11 Tð1Þ21 Tð1Þ31

�Gð1Þ12 �Gð1Þ22 �Gð1Þ32 Tð1Þ12 Tð1Þ22 Tð1Þ32

�Gð1Þ13 �Gð1Þ23 �Gð1Þ33 Tð1Þ13 Tð1Þ23 Tð1Þ33

Gð2Þ11 Gð2Þ21 Gð2Þ31 �Tð2Þ11 �T ð2Þ21 �Tð2Þ31

Gð2Þ12 Gð2Þ22 Gð2Þ32 �Tð2Þ12 �T ð2Þ22 �Tð2Þ32

Gð2Þ13 Gð2Þ23 Gð2Þ33 �Tð2Þ13 �T ð2Þ23 �Tð2Þ33

2
66666666664

3
77777777775

t01
t02
t03
u01
u02
u03

2
666666664

3
777777775
¼

uI
1

uI
2

uI
3

0
0
0

2
666666664

3
777777775
: ð25Þ
In the matrix form, we again omit the identity or constant terms (1/2) of the BIE’s because MLFMA only acts on far-interac-
tion terms. Each matrix element above includes sub-kernels related to shear wave and compressional wave, respectively.
These sub-kernels can be calculated for far interactions by following the MLFMA formulas developed in the previous sections
for the rigid object and traction-free cavity.

4. Reformulation of near terms

The near terms in the original Nyström method without MLFMA acceleration are calculated in the integrated form of the
kernels [30]. Now we have to separate the compressional wave part from the shear wave part in the kernels because they
belong to different FMA trees and reformulate the expressions for common near patches after cancelling the strongest sin-
gularities. The kernels in indicial notation can be found that [30]
Gij¼ðGÞij¼
c0

r3 fdij½ðksrÞ2eiksrþD�þCoirojrg

Tij¼ðn̂0 �RÞij

¼ c0

r4 keikcrðkcrÞ2ðikcr�1ÞniojrþleiksrðksrÞ2ðiksr�1Þðdij
or
on
þniojrÞþ2l C dij

or
on
þniojrþnjoir

� �
þFoirojr

or
on

� �( )
ð26Þ
where oir ¼ or=oxi, ojr ¼ or=oxj, and
c0 ¼
1

4pqx2

C ¼ Xseiksr �Xceikcr

D ¼ ðiksr � 1Þeiksr � ðikcr � 1Þeikcr

F ¼ Hceikc r � Hseiksr

Xs ¼ 3� 3iksr � k2
s r2

Xc¼ 3� 3ikcr � k2
c r2

Hs ¼ 15� 15iksr � 6k2
s r2 þ ik3

s r3

Hc ¼ 15� 15ikcr � 6k2
c r2 þ ik3

c r3: ð27Þ
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If we use the series expansion of the scalar Green’s function
eikr

r
¼
X1
m¼0

ðikÞmrm�1

m!
�
XM

m¼0

ðikÞmrm�1

m!
ð28Þ
the leading terms in the kernels, which include the strongest singularities, will be cancelled. Since the expansion is only ap-
plied to the near terms with a small r, the series converges very fast. The typical M is chosen as 10 and the accuracy of the
series can reach 10�8 when r ¼ 0:1 and k ¼ 2p (unit wavelength).

With the use of the series expansion and the cancellation of the strongest singularities in the kernels, we obtain
Gij ¼ c0
2
r
ðk2

s � k2
c Þ � iðk3

s � k3
c Þ

� �
oirojr þ

dij

r
ðk2

c � k2
s þ k2

s eiksrÞ þ
XM

m¼2

imrm�3

m!
ðkm

s Xs � km
c XcÞoirojr þ dijk

m
s ðiksr � 1Þ � dijk

m
c ðikcr � 1Þ

� �( )

Tij ¼ c0 kk2
c niojrAþ lk2

s dij
or
on
þ njoir

� �
Bþ 2l dij

or
on

P þ niojrP þ njoirP þ or
on

oirojrQ
� �� �

ð29Þ
where
A ¼ ðikcr � 1Þ
r2 eikcr ¼ � 1

r2 � k2
c þ

XM

m¼2

ðikcÞm

m!
ðikcr � 1Þrm�2

B ¼ ðiksr � 1Þ
r2 eiksr ¼ � 1

r2 � k2
s þ

XM

m¼2

ðiksÞm

m!
ðiksr � 1Þrm�2

P ¼ 1
r4 ðXseiksr �Xceikc rÞ ¼ 1

2r2 ðk
2
s � k2

c Þ þ
ir
6
ðk5

s � k5
c Þ þ

XM

m¼2

im

m!
ðkm

s Xs � km
c XcÞrm�4

Q ¼ 1
r4 ðHceikcr � HseiksrÞ ¼ 3

2r2 ðk
2
c � k2

s Þ �
1
2
ðk4

c � k4
s Þ þ

i
2
ðk5

c � k5
s Þr þ

1
6
ðk6

c � k6
s Þr2 þ

XM

m¼4

im

m!
ðkm

s Xs � km
c XcÞrm�4: ð30Þ
The FMA trees require to calculate the two parts related to two different wave numbers in the kernels individually, so the
above two kernels can be rewritten as
Gij ¼ Gs
ij þ Gc

ij

Tij ¼ Ts
ij þ Tc

ij ð31Þ
where
Gs
ij ¼ c0

k2
s

2r
þ rk4

s
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s
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�
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6
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�
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" #
ð33Þ
In the above, w ¼ s or c, and the upper sign is taken when w ¼ s whereas the lower sign is taken when w ¼ c. We can see that the
above kernels only include the weak 1=R and 1=R2 singularities and they can be easily handled. We have derived closed-form
solutions for these singularities and the treatment technique can be found in [30]. The 1=R2 singularity is a strong singularity
compared with the 1=R singularity but it is weak and much easier to handle compared to the 1=R3 hypersingularity. After
the two parts are evaluated in the two different FMA tree frames, they will be combined together for common near patches.

5. Reduction of number of patterns

We have shown an implementation scheme for MLFMA in Section 3. This scheme is suitable for the boundary element
method (BEM) workers in elastodynamics because we fully follow their conventions to formulate. These conventions include



928 M.S. Tong, W.C. Chew / Journal of Computational Physics 228 (2009) 921–932
changing the vector BIE into a scalar form with the use of indicial notations in denoting the components of kernels, and using
a collocation procedure to form a matrix equation without basis and testing functions involved. Although the implementa-
tion looks very simple, it is not efficient. If we introduce a MOM-like procedure in the Nyström method, the efficiency of
implementation can be improved by reducing the number of patterns. Consider the BIE in (9)
Z

S
Gðx;x0Þ � tðx0ÞdS0 ¼ �uIðxÞ; x 2 S ð34Þ
where we have omitted the transpose on G due to its symmetry and the subscript for simplicity. We can decompose the un-
known traction vector t into three orthogonal components, i.e.
tðx0Þ ¼ nðx0Þn̂ðx0Þ þ gðx0Þĝðx0Þ þ fðx0Þf̂ðx0Þ ð35Þ
where ðn̂; ĝ; f̂Þ are three orthogonal unit vectors and ½nðx0Þ;gðx0Þ; fðx0Þ� are three unknown components to be solved. We may
choose n̂ and ĝ as two unit tangential vectors to the object surface at the point x0 and f̂ as the outward normal unit vector at
the same point. When discretizing the object surface into N small triangle patches DSi ði ¼ 1;2; . . . ;NÞ and applying a quad-
rature rule to the integral over a patch, we can rewrite the BIE in (34) as
XN

i¼1

XQ

j¼1

Gðx;x0ijÞ � ½nðx0ijÞn̂ðx0ijÞ þ gðx0ijÞĝðx0ijÞ þ fðx0ijÞf̂ðx0ijÞ�wij ¼ �uIðxÞ; x 2 S ð36Þ
where x0ij represents the jth quadrature point within the ith patch, wij is the corresponding weight at the same point, and Q is
the total number of quadrature points over a patch. Testing the above discretized equation with n̂, ĝ and f̂ at an observation
point xpq which is the qth quadrature point in the pth patch, we can obtain a matrix equation
XN

i¼1

XQ

j¼1

f½âðxpqÞ � Gðxpq; x0ijÞ � n̂ðx0ijÞ�wijnðx0ijÞ þ ½âðxpqÞ � Gðxpq;x0ijÞ � ĝðx0ijÞ�wijgðx0ijÞ þ ½âðxpqÞ � Gðxpq;x0ijÞ

� f̂ðx0ijÞ�wijfðx0ijÞg

¼ �âðxpqÞ � uIðxpqÞ; xpq 2 S: ð37Þ
where â represents n̂, ĝ or f̂, and p ¼ 1;2; . . . ;N; q ¼ 1;2; . . . ;Q . We have two scalar Green’s functions in the kernel which are
related to the shear wave and compressional wave, respectively, and we need to handle them individually. For the shear
wave part, we can write the kernel as
Gsðxpq;x0ijÞ ¼
1
l

Iþrr
k2

s

 !
gsðxpq;x0ijÞ ¼

Z
d2k̂seiks �ðrbm�ram0 Þamm0 ðks; rmm0 ÞðI� k̂sk̂sÞ ð38Þ
where the subscript a ¼ ij represents a source point and b ¼ pq denotes an observation point. The terms in the square brack-
ets in the matrix equation (37) are then
âðxpqÞ � Gsðxpq; x0ijÞ � b̂ðx0ijÞ ¼ âðxpqÞ �
1
l

Z
d2k̂seiks �rbmamm0 ðks; rmm0 Þ � e�iks �ram0 � ðI� k̂sk̂sÞ � b̂ðx0ijÞ

h i
: ð39Þ
where b̂ also represents n̂, ĝ or f̂. Since I� k̂sk̂s ¼ ĥs
kĥ

s
k þ /̂s

k/̂
s
k, we can express the radiation pattern in (39) as
ðI� k̂sk̂sÞ � b̂ðx0ijÞ ¼ ĥs
k½ĥs

k � b̂ðx0ijÞ� þ /̂s
k½/̂s

k � b̂ðx0ijÞ�: ð40Þ
From the above expression, we can see that only two components or two radiation patterns need to be kept for each un-
known component at a source point in the matrix equation.

For the compressional wave part, the related kernel can be written as
Gcðxpq;x0ijÞ ¼ �
1
c
rr
k2

c

gcðxpq; x0ijÞ ¼
1
c

Z
d2k̂ceikc �ðrbm�ram0 Þamm0 ðkc; rmm0 Þk̂ck̂c ð41Þ
and the terms in the square brackets in the matrix equation (37) are then
âðxpqÞ � Gcðxpq; x0ijÞ � b̂ðx0ijÞ ¼ âðxpqÞ �
1
c

Z
d2k̂ceikc �rbmamm0 ðkc; rmm0 Þ � e�ikc �ram0 � k̂c½k̂c � b̂ðx0ijÞ�

n o
: ð42Þ
It can be seen that only one radiation pattern needs to be kept for each unknown component in this case. Therefore, there are
three radiation patterns (the shear wave part has ĥk and /̂k components and compressional wave part has k component) in
total for each unknown component. Since we have three unknown components for each unknown vector, we have nine radi-
ation patterns in total now and a half number of radiation patterns is reduced if compared with the original scheme. The key
step in the pattern reduction scheme is the use of spherical coordinates in the k̂ space where k̂ corresponds to r̂ in a spherical
coordinate system. The radiation patterns are the ĥk, /̂k and k̂ components in this space. When we make a translation in r̂
space, these patterns remain invariant because they belong to k̂ space.
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6. Numerical examples

We demonstrate the proposed MLFMA by solving several relatively large problems with spherical geometries and com-
paring the solutions with the corresponding analytical solutions. In the implementation, the object geometries are discret-
ized into triangular meshes and an one-point quadrature rule based Nyström method is used. This is because the cost will
dramatically increase if we use a higher-order quadrature rule (the higher-order quadrature rule based Nyström method is
usually used for small problems). Also, the Nyström method with the one-point quadrature rule is equivalent to the BEM.

We first consider the scattering by a fixed rigid sphere with a normalized radius of kca ¼ 16:0, where kc is the wave num-
ber of the incident wave and a is the radius of the sphere. The surrounding medium has Poisson’s ratio m ¼ 0:1 and mass
density q ¼ 1:0. The incident wave is a time-harmonic plane compressional wave with a unit circular frequency
(x ¼ 1:0). Fig. 2 illustrates the solution for the total traction field along the principal cut (/ ¼ 0� and h ¼ 0—180�) at the
sphere surface and the solution is close to the analytical counterpart. The used number of levels is L ¼ 5 and the number
of unknowns reaches K ¼ 305;280. The consumed CPU time is T ¼ 219;167 seconds and the memory usage is M ¼ 12 GB.
Note that although the same number of levels is used for different trees here, the definition for well-separation groups
and near terms is different in different trees due to the difference of the wave numbers and they cannot share the same tree.
We also use the pattern reduction scheme to calculate the scattered displacement field along the principal cut at the r ¼ 5a
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Fig. 2. Radial and tangential (elevated) components of total traction field along the principal cut at the surface of a rigid sphere, kca ¼ 16:0.
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930 M.S. Tong, W.C. Chew / Journal of Computational Physics 228 (2009) 921–932
observation surface and Fig. 3 shows the solution with a comparison to the analytical counterpart. The computational con-
ditions are the same as before except that kca ¼ 20:0, K ¼ 317;196 and T ¼ 182;347 now. The proposed MLFMA can of
course be applied to arbitrary 3D geometries. Fig. 4 illustrates the scattering solution by a rigid cube and no exact solutions
can be used to compare with. The computational conditions are the same as those in the first case except that K ¼ 343;224,
T ¼ 230;672 seconds, and the side length of the cube is 2a with kca ¼ 20:0 now.

We then consider the scattering by a traction-free spherical cavity embedded in an elastic medium. The cavity also has a
normalized radius of kca ¼ 16:0 and the surrounding medium is characterized by Poisson’s ratio m ¼ 0:1, Young’s modulus
E ¼ 2=3 and mass density q ¼ 1:0. The incident wave is the same as that for the rigid sphere. Fig. 5 plots the solution for
the scattered displacement field along the principal cut at the r ¼ 5a observation surface. The number of levels and number
of unknowns are the same as those for the rigid sphere. The consumed CPU time is T ¼ 245;986 seconds and the memory
usage is M ¼ 12 GB.
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Fig. 4. Radial and tangential (elevated) components of scattered displacement field along the principal cut at the r ¼ 10a surface for a rigid cube with a side
length of 2a.
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Fig. 5. Radial and tangential (elevated) components of scattered displacement field by a spherical cavity along the principal cut at the r ¼ 5a surface,
kca ¼ 16:0.
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We finally consider the generalized case, i.e. both the object and surrounding media are elastic. We select k1 ¼ 0:1,
l1 ¼ 0:4 and q1 ¼ 1:0 for the surrounding medium, and k2 ¼ 0:2, l2 ¼ 0:5 and q2 ¼ 2:0 for the elastic spherical object with
a normalized radius of kca ¼ 8:0. The incident wave is also the same as before. Fig. 6 shows the solution for the total displace-
ment field along the principal cut at the sphere surface. The number of levels is L ¼ 4 and the number of unknowns is
K ¼ 237;600. This problem is relatively small because there are four FMA trees in this case and the computational cost is
much higher than those for rigid sphere and cavity scattering. The consumed CPU time and memory usage in this case
are T ¼ 201;129 seconds and M ¼ 12 GB, respectively. From these figures, we can see that the MLFMA solutions are in good
agreement with corresponding analytical solutions which can be found in [33].

7. Conclusion

We develop MLFMA for solving elastic wave scattering by large 3D objects. Since the governing BIE includes multiple
wave numbers, a multiple-tree structure is used in the implementation of MLFMA. However, the multiple-tree frame will
result in a nonuniform definition for well-separated groups and the cancellation of the strongest singularities in the series
representation of kernels for near terms may be destroyed due to the disagreement of near-patch definition. We overcome
this drawback by searching common near patches in different trees and reformulating the expressions of the near terms so
that the cancellation of the strongest singularities is kept and the resulting singular integrals can be handled conveniently.
Numerical examples have been used to demonstrate the feasibility of the proposed implementing scheme for the algorithm
and fast solutions for the problems with 0.3–0.4 millions of unknowns have been achieved on a Dell Precision 690 worksta-
tion with two dual-core 3.0 GHz processors and 16 GB RAM but using a single core.
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